Diferenças

Aqui você vê as diferenças entre duas revisões dessa página.

listas:prova1 [13/04/2010 21:22]
tjpp
listas:prova1 [13/04/2010 21:31] (atual)
tjpp
Linha 6: Linha 6:
  - (3,0) Considere um sistema de $N$ partículas em que cada uma pode ocupar apenas dois estados não degenerados de energias $e_1=0$ e $e_2=\epsilon$. Este tipo de sistema é conhecido na Mecânica Quântica e é utilizado para estudos de quiralidade, na molécula de amônia, sistemas de spins, etc. (a) Se a energia total do sistema é $E=m\epsilon$, onde $m$ é um número inteiro, obtenha a expressão para $\Omega(E)$. (b) Use a aproximação de Stirling $(\ln n! \approx n\ln n -n)$ e encontre qual o valor de $E$ para qual $\Omega(E)$ é máximo.   - (3,0) Considere um sistema de $N$ partículas em que cada uma pode ocupar apenas dois estados não degenerados de energias $e_1=0$ e $e_2=\epsilon$. Este tipo de sistema é conhecido na Mecânica Quântica e é utilizado para estudos de quiralidade, na molécula de amônia, sistemas de spins, etc. (a) Se a energia total do sistema é $E=m\epsilon$, onde $m$ é um número inteiro, obtenha a expressão para $\Omega(E)$. (b) Use a aproximação de Stirling $(\ln n! \approx n\ln n -n)$ e encontre qual o valor de $E$ para qual $\Omega(E)$ é máximo.
-     * $\Omega(m) = N!/m!(N-m)! \therefore \Omega(E) = N! /(E/\epsilon)!(N-E/\epsilon)!$.+     * <latex>\Omega(m) = N!/m!(N-m)! \therefore \Omega(E) = N! /(E/\epsilon)!(N-E/\epsilon)!</latex>.
     * $\ln\Omega(m)=N\ln N - N - m\ln m +m -(N-m)\ln(N-m) + (N-m)= N\ln N/(N-m) - m \ln(N-m)/m$. \\ Para achar o máximo $\frac{d}{d m}\Omega = - 1 - \ln m + 1 + \ln (N-m)$ que se anula para $m=N/2$ ou $E=(N/2)\epsilon$.      * $\ln\Omega(m)=N\ln N - N - m\ln m +m -(N-m)\ln(N-m) + (N-m)= N\ln N/(N-m) - m \ln(N-m)/m$. \\ Para achar o máximo $\frac{d}{d m}\Omega = - 1 - \ln m + 1 + \ln (N-m)$ que se anula para $m=N/2$ ou $E=(N/2)\epsilon$.
  - (2,0) Durante várias gerações, a enorme população de SimNation tem sido mantida constante. Curiosamente, todas as pessoas de SimNation se   casam. Qual a probabilidade de um casal ter filhos ? E mais do que dois filhos ?   - (2,0) Durante várias gerações, a enorme população de SimNation tem sido mantida constante. Curiosamente, todas as pessoas de SimNation se   casam. Qual a probabilidade de um casal ter filhos ? E mais do que dois filhos ?
 
listas/prova1.1271204566.txt.gz · Última modificação: 13/04/2010 21:22 por tjpp     Voltar ao topo
Recent changes RSS feed Creative Commons License Donate Powered by PHP Valid XHTML 1.0 Valid CSS Driven by DokuWiki Design by Chirripó